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We use the known values of the equilibrium virial coefficients through the eighth term for a two-
dimensional fluid of hard disks to treat the reversible adsorption of disks from a gas of constant activity
onto a surface. Assuming rapid equilibration on the surface, the virial series can be converted into a
series for the time required to achieve a given degree of surface coverage. We then use the maximum-
entropy method to extend the series, thus giving an approximate description of the entire time course of

the adsorption process.

PACS number(s): 05.20.—y, 05.50.+q, 05.70.Jk, 05.70.Ln

INTRODUCTION

The cooperative adsorption of particles to a surface has
recently been reviewed by Evans [1]. When the motion of
molecules on the surface is rapid relative to the rate of
adsorption one can use the equilibrium surface activity to
describe the kinetics [2]. This method has been applied
to models where the surface is a two-dimensional lattice,
specifically to the adsorption of dimers [3], macro-
molecules [4], and to particles with nearest-neighbor at-
traction [5]. The method is also applicable to the adsorp-
tion of particles on a continuous surface. Recently van
Rensburg [6] has pushed the virial series for hard disks
through the eighth-term (Bg) and here we want to use
this equilibrium series to describe the reversible kinetics
of the adsorption of disks, the only cooperative interac-
tion being the effect of excluded volume. We will use the
exact equation of state for rods as a comparison test for
the accuracy of the approach.

The eight term virial series for the pressure of hard
disks in two dimensions can be turned into a similar
series for the time required to achieve a given density of
coverage of a surface. One standard method to extend
such series is the use of rational approximants such as
Padé approximants. Wang, Mead, and deLlano [7] have
recently applied the maximum-entropy method to the ex-
trapolation of power series, transforming the moment
problem into a series problem via an appropriate integral.
Here we will apply the maximum-entropy method to the
extrapolation of the time dependence of the adsorption
process. We begin by reviewing the basic kinetic equa-
tions for the adsorption of hard particles from a gas onto
a surface.

1. BASIC KINETICS

We will assume that we have a smooth surface in con-
tact with a gas of disks that is held at constant activity as
illustrated in Fig. 1. The disks will adsorb reversibly to
the surface, there being no interaction between the disks
on the surface other than the requirement that they do
not overlap on the surface. We will let z, be the constant

g
activity of the gas molecules, p; be the density of mole-
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cules on the surface, and p, the density of surface sites
large enough to accommodate a disk. The basic adsorp-
tion and desorption processes are illustrated in Fig. 2 for
the case of hard rods (for simplicity) which can also be
thought of as a cross section describing the adsorption of
disks. The net rate of the change of the density of mole-
cules on the surface is the difference between the rate of
adsorption and the rate of desorption

dp, /dt =(rate of adsorption)—(rate of desorption) .
(1.1)

The adsorption process requires a gas molecule and a site
on the surface large enough to fit a disk. The probability
that a gas molecule is in a given volume element is pro-
portional to the activity of the gas z, and hence the rate
of adsorption is proportional to the product of the gas ac-
tivity and the density of surface sites p,. The rate of
desorption is simply proportional to the density p, of sur-
face molecules. Taking the proportionality constants
(rate constants) for adsorption and desorption as k * and
k ~, respectively, we have the two rates

rate of adsorption=k " [z} ][p, ],
(1.2)
rate of desorption=xk " [p,] .

FIG. 1. Schematic illustration of the adsorption of disks
from the gas phase onto a smooth surface.
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FIG. 2. Illustration of the adsorption and desorption pro-
cesses for rods onto a one-dimensional surface. The rate of ad-
sorption is proportional to z,, the activity of molecules in the
gas phase, and to p,, the density of sites on the surface large
enough to accommodate a molecule with rate constant k*. The
rate of desorption is proportional to p;, the density of molecules
on the surface with rate constant k ~.

We will use a star superscript, as on z;

stant quantity.
The chemical potentials and activities of molecules in
the gas phase and adsorbed on the surface are

, to indicate a con-

Bug =B,ug+lnzg, Bu, =Bul+Inz, , (1.3)
where B=1/kT. The standard chemical potentials
Bug=—Ing,, PBu)=—Ing, , (1.4)

can be expressed in terms of the internal partition func-
tions g, and g, for gas and surface molecules, respective-
ly. At equilibrium (at fixed temperature)

Bpg =B (1.5)
and
z¥ o +
S (1.6)
zg qs k
The relation of (1.6) is equivalent to the condition
zt=Kzg , (1.7)

where K is the binding constant of the particles to the
surface. Thus the final equilibrium surface activity z* is
simply proportional to the constant activity of the gas z;'.

To achieve a working relation we divide through on

both sides of (1.1) by k ~ and define a new time scale

t'=k"t, (1.8)
giving
dpg/dt'=zrp, —p, . (1.9

The quantity z.* in (1.9) is the constant equilibrium value
of the surface activity given in (1.7). There are two vari-
ables (densities) in (1.9), p, (the density of adsorbed mole-
cules) and p, (the density of proper adsorption sites). In
order to integrate (1.9) we must know how p, depends on
ps- If the motion of the particles on the surface (surface
diffusion) is much faster than the rate of adsorption, then
the surface states will be in an instantaneous state of
internal equilibrium as the slow adsorption process
occurs. In this case we can use the equilibrium relation
between p,, the density of vacancies on the surface large
enough to accommodate a particle, and p, the density of
particles on the surface. This relation is obtained simply
by setting dp, /dt’=0 in (1.9) giving a fundamental rela-
tion valid for all hard particle systems (not just two-

dimensional adsorption models)

Px=Ps/Z; . (1.10)

We can now use (1.10) for p, in (1.9), dropping the sub-
script s, understanding that p and z now refer to the sur-
face density and activity. We obtain

dp _ _«p _

dt' P
where z* is the final equilibrium activity of the surface
(determined by the constant activity of the gas in contact
with the surface) and z is a time dependent surface activi-
ty. To use (1.11) we must know how the activity depends
on the density, i.e.,

(1.11)

z=z(p), (1.12)

and this information comes from equilibrium statistical
mechanics through virial series, which we review next.

II. ACTIVITY AND VIRIAL COEFFICIENTS

The virial equation of state gives the pressure as a
series in the density

Bp/p=1+ 3 B,,p".

n=1

2.1

In general, the virial coefficients B, are functions of tem-
perature, but for hard particles they are constants. From
the basic thermodynamic equation for the chemical po-
tential

1p
du=——>=dp
p dp
we can use (2.1) and integrate (2.2) term by term to obtain
u [with u® being an integration constant given by (1.4)].
We then use the general relation of (1.3) between the
chemical potential and the activity to obtain

(2.2)

0

)

n=1

n+1

) (2.3)

Z=pexp B, 110"

which gives the activity in terms of the density and the
virial coefficient, which is the relation indicated symboli-
cally in (1.12) that is required to give the basic rate equa-
tion (1.11) in terms of the single variable p. The quantity
that appears in (1.11) is the ratio of the activity to the
density which is the activity coefficient

vip)=z/p . 2.4

It is conventional to write the B, relative to B,. We
use the standard symbol

b=B,, (2.5)
and define relative virial coefficients
B, =B, .,/b". (2.6)

It is also useful to express the density relative to the den-
sity at close-packing p,,. For this purpose we introduce
the variable

r=p/p, . 2.7
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Using (2.4), (2.6), and (2.7) we can express the density
dependence of the activity as

0

Iny(r)= 3

n=1

n+1

Bn +1'(bpm )"r" . (2-8)

For rods (where ¢ is the length of the rod) we have
b=o, p,=1/0, (bp,)=1, (2.9)
while for disks (where o is the diameter of the disk)

T
b=—0?

=2 1 .
2 ’ pm—‘/§ 0_2, (bpm) ‘/—3 . (2.10)

The equation of state for rods is known exactly [10,11]
1

B, /p= T (2.11)
with
B, =0" (2.12)

In this case we have a closed expression for the activity as
a function of the density

_pP

1—op

_9p
1—op

= , (2.13)

€X

which we can also write in terms of the activity
coefficient of (2.4) and the relative density of (2.7)

r
1—r |

For comparison with the series for disks, the beginning
terms in the series expansion of the logarithm of the
above expression are

Iny=2r[1+3r +%r2+%r3+%r4+%r5+%r6+ SR IS

1
Y= 1, |&XP (2.14)

(2.15)

For disks the B, are known exactly through B, and
have been determined numerically through Bg by van
Rensburg [6]; this reference lists the earlier work on the
numerical determination of Bs—B,. The exact results are

32:b=17.02 s

2
Bybi=1—Y3 (2.16)
o
9v3 | 10
3=y 23 10
B,/b T

while the numerical values are (giving the uncertainties in
the final digits in parentheses)

B5/b*=0.33355604(4) ,
B4/b°=0.198 83(1) ,
B,/b%=0.114859(70) ,
B3 /b"=0.065 140(80) .

(2.17)

These numbers yield the following series for Iny for disks

Iny =(3.6276)r[1+(1.063 81)r +(1.167 29)r?
+(1.24402)r3+(1.29106)r*
+(1.31585)r°+(2.324 62)r°

+ -], (2.18)

We require this series for two reasons. First, we need to
use it in our basic kinetic equation given by (1.11) to give
z (or y) as a function of p (or r) and, second, we need to
know the equilibrium value y* corresponding to the equi-
librium value r* (measuring the equilibrium fraction of
coverage).

For numerical examples we will take the following
values of the required parameters. For rods we pick the
final state that is half of the close-packed density

r*=1/2, y*=2e (rods) . (2.19)

The value of y* given above that corresponds to r* =1 is

obtained from the exact relation of (2.14). For disks we
pick a value of r* that is the two-dimensional analog of

r*=1 for the one-dimensional case, namely,
r*=1=(1)% Thus
r*=1, y*=3.452779 (disks) . (2.20)

In this case we have used a Padé approximant to the
series for Iny given in (2.18) to calculate the required
value of y*. When we similarly use a Padé approximant
to the series of (2.15) for the case of rods we obtain the
exact value to six figures. The equilibrium densities indi-
cated above for rods and disks are illustrated in Fig. 3
(shown as a regular pattern for simplicity).

e S

Rods (r* = 1/2)

Disks (r* = 1/4)

FIG. 3. Illustration of the final, equilibrium densities for rods
and disks that will be used in our numerical examples. In both
cases r* is the density relative to close packing. A regular ar-
rangement is shown for simplicity.
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III. SERIES SOLUTION FOR THE KINETIC
EQUATION

In the preceding section we reviewed how the activity
can be expressed as a function of the density using virial
coefficients. We can now proceed to express the solution
of the kinetic equation as a series in the density. We in-
troduce one final variable, the ratio of the time-dependent
density to the final equilibrium density

x=p/p* (3.1

This variable ranges from zero to one as the time varies
from zero to infinity (assuming no coverage of the surface
at zero time). With this change of variable (1.11) be-

comes
x *
ax v , 3.2
dt’  y(x) x 3.2
where y* is the constant equilibrium value of y (deter-

mined by the constant activity of the gas) and y(x) is the
time-dependent activity coefficient of the surface. We
now express ¥ in terms of the variable x rather than in
terms of the variable r used previously. The change in
variable is accomplished by the relation

(3.3)

where r*
um state.
It is convenient to divide all the terms in (3.2) by y*

giving
dx« _ 1 1

a7y Fx ) (3.4)

with

is the fraction of close-packing at the equilibri-

t'=t'y* (3.5)

Finally we drop the primes on ¢ giving
x, (3.6)

where

y(x)=14c,x +c,x%+ -+, (3.7)

as given by (2.15) for rods and (2.18) for disks (as the log-
arithm of ).
We can then formally integrate (3.6)

fo_?Lw =t .

(3.8)
1—wy(w)/y*

Using the series form of (3.7) we can expand the quantity
in the integral and integrate term by term giving a series
solution of the form

t=x R (3.9)

giving the time required to produce a given fraction of
the final density as a series in that fraction. Thus a finite
number of virial coefficients (the B, ) gives a finite number
of coefficients (the ¢, ) in the expansion for y(x) of (3.7),

which in turn gives a finite number of coefficients (the
A,) in the series for ¢t of (3.9). Given the virial
coefficients for disks through By gives the coefficients in
the above equation through 4,.

For the conditions listed in (2.19) and (2.20) of r*=1
for rods and r*=1} for disks (illustrated in Fig. 3) the
series of (3.9) gives, for rods,

t/x =14(0.591970)x +(0.425571)x?
+(0.330473)x >+(0.268 620)x *
+(0.225442)x°+(0.193 822)x ¢
+(0.16980)x 7+ - - - (3.10)

and for disks,

t/x =1+(0.598 43)x +(0.420 81)x2+(0.319 794)x*
+(0.256 41)x*+(0.213 673)x>+(0.183 11)x®
+(0.160204)x 7+ - - - (3.11)

The two series are very similar and are very well behaved.
We now move on to methods for extending the series,
in particular the maximum-entropy method. For future
reference, we note that we can obtain the exact solution
for rods by numerically integrating the following form
(for r*=1)
x dw

= 0 (l—w/2)exp[—w/(z_w)]_w/ze . (3.12)

IV. MAXIMUM-ENTROPY METHOD

We will follow the treatment of the maximum-entropy
method given by Mead and Papanicolaou [8]. Given an
unknown distribution function P(x) with moments (not
chemical potentials)

= ["x"P(x)dx , (4.1)

which are known for n=0 to n =N, the maximum-
entropy, or least-biased, approximation to P(x) is given
by

Py(x)=exp[—Ty(x)], (4.2)

where
N
=3 A,x", (4.3)

where the (N+1) A’s are determined to give the correct
(N+1) p’s. Mead and Papanicolaou [8] have proved that
the series of functions Py(x) approach the correct P(x)
as N— . For a distribution defined on the interval
(0, ) Tagliani [9] has shown that the distribution Py al-
ways exists for N =4. For N=2 the distribution only ex-
ists if 1 <p,/u?<2.

Recently Wang, Mead, and deLlano [7] applied the
maximum-entropy approach to the extension of power
series, specifically the equations of state for disks and
spheres. They showed that one can convert the power-
series problem into the moment problem. Given a func-
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tion of x expressed as a series one can relate this to an in-
tegral over a distribution function as follows:

1 P(s) d

FR=1+ S Ax"= s, 4.4)

n=1 0 (1—xs )a
where a will usually be taken as an integer; the value of a
will determine the asymptotic form of f(x) as it ap-
proaches its radius of convergence. Expanding
(1—xs)~* about (xs)=0 using Newton’s generalized bi-
nomial expansion one has

ala+1):- - (a+n—1)
n!

fx)=3 x" s ds, 4.5
n=0 0

which gives the following relation between the

coefficients A4, in the power-series expansion for f(x)

and the moments u, of P(s):

n!
ala+1) - (a+n—1)

Thus given the coefficients in the power series, we can
calculate the moments for the distribution function P (s).
If we know P (s), we can then calculate f(x) by the in-
tegral in (4.4). It will turn out that a=1 is the appropri-
ate choice for our kinetic series and in that case we have

= 4, . (4.6)

ala+1)---(a+n—1)=n! 4.7)
and hence
u,=A4, , (4.8)

so that the coefficients in the density series are the mo-
ments of P(s). Knowledge of the 4, through Ay thus
allows us to construct the maximum-entropy approxima-
tion Py.

One cannot construct Py for any set of (N +1) u’s.
These quantities must satisfy the Hausdorff criteria
which are necessary and sufficient conditions for the u’s
to be the moments of a non-negative function P(x). For
P(x) on the interval (0,1), which is the interval used in
(4.5), the Hausdorff conditions are

m .u’n+m>0 ’

k
> (=7

m=0

[for (n,k)=0to (n +k)<N]. (4.9

If P(x) is given for a different interval, one must first re-
scale the moments to the interval (0,1).

Wang, Mead and deLlano [7] found that the virial
series of (2.1) for the pressure of hard disks and spheres
on converting the viral coefficients into moments using
(4.6), only passed the Hausdorff test if they used a=4.
Using the value of a=4 they then found that the
maximum-entropy method give an excellent fit to the
molecular dynamics data for these hard particle systems,
giving better accuracy than did Padée approximants.

It is interesting to note that for a=2 the maximum-
entropy method gives the exact equation of state for the
one-dimensional fluid of hard rods with

Py=1 (all N) . (4.10)

This is equivalent to

A,=0 (all n, all N) . (4.11)
This is seen from (4.4) with P(s)=1 and a=2
[1E g L _Bp 4.12)
0 (1—rs) I—r p

where r =p/p,, =op.

Clearly the value of the exponent a in (4.5) is very im-
portant since, as this example shows, it determines the
asymptotic form. The value of a=4 used by Wang,
Mead, and deLlano has no obvious physical meaning
since it was chosen simply to make the moments pass the
Hausdorff test. Unlike the case of the hard rod system,
the disk and sphere systems each show a phase transition
[12—-14] at the respective relative densities r* =0.762 and
r*=0.613. Thus the low density series cannot be used
beyond this singular point and the singularity at close
packing introduced by the maximum-entropy procedure
has no physical significance.

For our kinetic equation we expect the following
asymptotic form as ¢t — co. First we define

y=l—x, (4.13)

which measures the distance from the final state, i.e.,
y—0 as t— 0. Since the final equilibrium state is not a
special state (does not correspond to a phase transition
density) then close to the large stage of the adsorption
process we expect the simple form

d 1

i

t T

where 7 is the characteristic relaxation time for the final
stage of the dynamics. This gives

(4.14)

y~Aexp(—t/T), (4.15)

where A is a constant. Converting back to the variable x
using (4.13) gives

t~—7In(1—x), (4.16)

and we expect our series to have the asymptotic form
t~7(x +ix2+Lx3 4 dxt 4 -0 4.17)

We will compare the series we have obtained for rods and
disks with this form shortly.
If we use the following form for our kinetic series

t/x =1+ A, x +A,x>+ - - :f(x):fol (IP_(i)s)ds ,

(4.18)

then as x —1 the integral will be dominated by P(s) in
the neighborhood of s=1 and we have the asymptotic
form
1 ds 1
t/x~P(1) [ —F—=——P(In(1—x). (4.19)
0o (1—xs) x
Comparing (4.16) we see that it has the correct asymptot-
ic form with
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T7=P(1). (4.20)

We can also obtain an expression for the relaxation
time in terms of the activity. We write our basic kinetic
equation of (3.6) in the form

dx /dt =g(x) , (4.21)

where g(x) is defined by comparing (3.6) and (4.21).
Then using the definition of y in (4.14) we have
dy/dt=—g . (4.22)

The relaxation time is obtained by linearizing (4.22) about
the final state, i.e., y=0

dy /dt ~— | 9& (4.23)
dy y=0
We have then
1_(dg| _[dg| ax__[dg 20
T dy |, dx | _,dy dx | _, )

From (3.6) we see that the derivative of g requires
knowledge of the derivative of Iny

Olny _ |dlny dr _ | dlny
= —= , (4.25)
dx or |,+dx dlnr | «

where we have used (3.3) to give dr /dx =r*. Then final-
ly

1_1 1, |8y (4.26)
T y*{ dlnr S*

Using the form of Iny(r) given in (2.8) we have the expli-
cit form

1 _ 1 i

;—F [1+n§l(n +1)B, +1(bp,, ) (r*)" (4.27)

For the case of hard rods we have the closed form
r=(1—r*¥exp[r*/(1—r*)]. (4.28)

V. NUMERICAL EXAMPLES

The technical problem in the application of the
maximum-entropy method is to calculate the parameters
Ao through Ay given the known moments po through py.
We sketch the method given by Mead and Papanicolaou
[8]. We define the (N X N) matrix of second derivatives
(Hessian)

H=(H,,), (5.1
where (for m,n >0)
3T

H,,=—————=(x""")—(x"}{x"),

mn S o, (5.2)

where T is given in (4.3). The construction of this matrix
requires the calculation of averages {(x") through
n =2N. We designate (x") as a quantity calculated us-
ing an estimate of Py(x) as opposed to the exact value

1,. We then define the column vectors

m=(u,), I=(1,), x=({x")), (5.3)

where the index n runs from one to N. Starting with an
initial guess for / (usually A, =0 for all n), an improved
vector is given by

I'=1+H {({x)—m) . (5.4)

All the quantities on the right-hand side of (5.4) are cal-
culated using the previous estimate of the A,. One then
iterates until there is agreement between I’ and I, say to
ten figures. Typically this takes five to six iterations.

We begin with the series for ¢ /x for rods given in (3.10)
for the value of r*=1 given in (2.19). If we take a=1 in
(4.4), which gives the form of (4.18), we have the case of
(4.8) where the terms in the series for ¢/x are the mo-
ments of the distribution P(x) without any alteration.
The moments p, through p, are then given directly as the
coefficients in (3.10); these moments satisfy the Hausdorff
conditions of (4.9) so we can move on directly to the eval-
uation of the "y (4.3), with Py =exp(—I'y). For exam-
ple, the first two maximum-entropy polynomials are
found to be (for r*=1)

',=0.615746—1.126 785x ,

(5.5)
I',=0.744059—1.783 203x +0.609 323x? .

The values of Py(x =1) are shown in Table I. From
(4.20) we expect the quantities Py (1) to give estimates of
the relaxation time. The exact value of this parameter is

given by (4.28); for rods with »* =1 we have

T=e/2=1.359 . (5.6)

We note that the numbers given in Table I do not
represent a monotonic sequence of numbers that ap-
proach this value.

The functions Py(x) obtained from (5.5) are plotted in
Fig. 4. We have grouped the functions as follows:
(Py,P,), (P3,P,), (Ps5,Pg), and (P4). For this particular
system these pairs seem to form a natural grouping. No-
tice that the functions oscillate more as N increases (this
is required to give more moments exactly). Because of
this oscillation, there is an erratic behavior of the end
point Py(1) and hence the numbers in Table I do not
show a uniform approach to the value of 7 given in (5.6).
The functions Py(x) are constructed to give a set of mo-

TABLE I. The values of Py(x =1) for rods and disks.

N Rods Disks
1 1.6670 1.7239
2 1.5370 1.1359
3 1.1110 0.9519
4 1.2173 1.9876
5 1.6792 1.1783
6 1.5353 0.5785
7 0.8833 3.3345
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ments exactly, but there is no requirement that the end-
point approach some prescribed number. While the func-
tions Py (x) oscillate, the net result ¢t =¢(x) does not; ¢ (x)
is given by the integral in (4.18) which, even for P,(x),
must be evaluated numerically.

We now compare the results obtained from the exact
relation of (3.12) for rods with the T y(x) of (5.5) used in
(4.18). Also, for comparison, we construct the following
direct Padé approximants to the series of (3.10). We will
designate a Padé approximate by the symbol Q,.,» and
refer to it as the [m /n] approximant, where m and n are
the total number of terms in the numerator and denomi-
nator, respectively. All of the Padé approximants have
the following asymptotic form as t — oo

1

t~ —_—
1—x/x,

, (5.7

i.e., a simple pole, the position of which is determined by
the denominator root x ;, closest to the origin. We obtain
x,=1.689 for the [1] approximant and x,=1.072 and
x,=1.075 for the [{] and [3] approximants. Thus as
the number of exact coefficients that are used from (3.10)
is increased, x, approaches one. Since the correct
asymptotic form of ¢ (x) is given by (4.16), we see that the
Padé approximants have the wrong asymptotic form and
the wrong asymptote. All of the maximum-entropy ap-
proximations have the correct asymptotic form and the
correct asymptote built in, even at the lowest level.

In Fig. 5 we compare the simplest maximum-entropy
result, using P,(x), with the simplest Padé approximant,
the [1] approximant. Both of these results are construct-
ed using only the coefficient of the linear term in (3.10).
These curves are compared with the exact result of (3.12).
The agreement of the simplest level of the maximum-
entropy method with the exact result is quite impressive:
this result has the correct functional form as t— o and
has the correct asymptote (but not the correct value of 7
as shown in Table I). By contrast the Padé approximant,

constructed using the same input, has the wrong asymp-
tote and the wrong functional form (one can clearly see
the difference in the figure between the behavior of
[—In(1—x)]and [1/(1—x/x,)].

If we were to plot the functions t =¢(x) obtained using
P, through P, the results would be hard to distinguish in
a figure. Instead we show some numerical comparisons
in Table II between various of the Py, the mean of the
[£] and [2] Padé approximants (the data marked Padé-1)
and of the exact result of (3.12). The two Padé approxi-

e ceecmccamm s e resracrccra e s mm——a - .————

‘ T
0.0 05 1.0 « 15 20

FIG. 5. Comparison of various versions of #(x), the time re-
quired to give a given fraction of the final, equilibrium surface
density for rods with r*= 1. The exact curve given by (3.12) is
labeled as is the [%] Padé approximant of (5.7). The solid points
are the maximum-entropy result using P,(x); the points shown
are for x=0 to 0.9 in steps of 0.1 and for x=0.99. The asymp-
tote at x=1 is the position of the final equilibrium state; the [%]
Padé approximant has an incorrect asymptote at about x=1.7.
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TABLE II. The values of z(x) for various approximations for the adsorption of rods; all for

r*=1/2.

x P, P, Py P, Padé-1 Padé-2 Exact
0.1 0.1064 0.1064 0.1064 0.1064 0.1064 0.1064 0.1064
0.3 0.3685 0.3683 0.3683 0.3683 0.3683 0.3683 0.3683
0.5 0.7381 0.7364 0.7365 0.7365 0.7365 0.7365 0.7365
0.7 1.3400 1.3290 1.3298 1.3297 1.3295 1.3297 1.3297
0.9 2.7888 2.6899 2.7112 2.7041 2.6853 2.7038 1.7065
0.99 6.2977 5.5313 5.9496 5.5922 4.7050 5.6805 5.7776
0.999 10.0694 8.1809 9.5905 7.9983 5.1343 8.5790 8.9010
1.0 © o0 © © 5.1979 0 )

mants show close internal agreement; for example at
x=0.9 one has t=2.6874 and t=2.6833 from the [ ] and
[2] approximants. The Padé approximants are finite at
x=1 since the position of x, is greater than one
(x,=1.07).

To see how well the asymptotic behavior of the adsorp-
tion process is given by (4.16) we can use the exact result
of (3.12). We define w=—In(1—x) and plot ¢/w ob-
tained from (3.12) as a function of 1/w. From (4.15) this
should be a straight line with intercept and slope indicat-
ed below

t/w =T+i('rlnA) . (5.8)

Figure 6 shows this plot for x=0.9 to x=1. We see that
over the last 10% of the relaxation process the asymptot-
ic form of (4.16) holds quite closely. Since the values of 7
obtained from Py(1), as illustrated in Table I, are quite
bad, the maximum-entropy approximations will not give
a good representation of the asymptotic behavior.

If we know that the asymptotic form of ¢t =t(x) is
given by (4.16) then it is possible to construct a Padé ap-
proximant that has this form rather than using a direct
Padé approximant to the series ¢#(x) that has the in-
correct asymptotic form of (5.7). We take the series of
(3.10) and divide this by the series for [ —In(1—x)] giving
the new series

g(x)=t/[—In(1—x)]=1+0.09197x +0.046 252 7x%+0.026 69x*+0.016 864 9x *
+0.011489x5+0.008 347 33x°+0.006 39507x 7+ - - - . (5.9)

Now ¢ (x) is given by

t=—In(1—x)q(x), (5.10)

and this will be useful only if q (x) has no singularities in-
side the unit circle. For both Q, 5 and Qs 4, the denomi-
nator root closest to the origin is at about x,=1.151
(specifically x,=1.511 and x,=1.1513, respectively).
Thus —In(1—x) determines the dominant form as x —1
with g(x) acting as a modulating form that guarantees
that the first eight terms in the expansion of ¢(x) are ex-
actly correct. At x=1 we have

0, 5(x =1)=1.2430,
Q5’4(X =1)=1.2428 .

(5.11)

We note that

T=q(x=1), (5.12)

so g (x) can be viewed as a series for the evaluation of 7.
From the result 7=1.359 of (5.6) we see that the Padé ap-
proximants miss the correct value, but give a better esti-
mate than do the maximum-entropy results given in
Table 1. We show the mean value of the sum of Q, 5 and
Qs,4 which is given as ¢ (x) in Table II (reported as Padé-

1.3 4

t/w

1.2 4

0.0 0.1 0.2 03 04 05

1/w

FIG. 6. A plot of t/w versus w [where w =—1In(1—x)] as
given by (3.12), the exact ¢ (x) for rods. The points shown cover
the range x=0.9 to 1.0, the last 10% of the adsorption process.
The linear form shows that the last stage of adsorption is simple
exponential in the time and closely follows (5.11).



2). This Padé approximant result is in excellent agree-
ment with the exact result and is as good as, or better,
than the best maximum-entropy result.

We consider finally the series for 7 given by (4.27). For
rods (bp,,)=1and B, =1 so we have

1_1 2 .
—=— 3 n(r*)"7 . (5.13)
T 7/* n=0
Truncating the series at n=7 gives (using r*=1 and
v*=e /2 for our example)
7=1.388, (5.14)

which compares well with the exact value of 7=1.359 of
(5.6).

J
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VI. DISKS

We will begin our discussion of the adsorption of disks
where we left off in our discussion of the adsorption of
rods in the previous section, namely with the relaxation
time. Equation (4.27) gives the general formula for this
quantity, involving y* and a series we will call S (7)

l=—l*—S(r). (6.1)

T v
The quantity y* for disks is given by (2.18), with the
Padé approximant given by (2.19) and (2.20). For disks
the series S (r) is given by

S(r)=1+3.627599r +7.718 075r%2+12.703 65¢3
+18.050 78r*+23.4196r°+28.628 5176
+33.65601r7+ - -+ . (6.2)

The diagonal Padé approximant to S (7) is

1+38.448 46r —22.786 31r>—0.950207 5r3

S(N=~Qy4=

Using the Padé approximant of (6.3) with that of (2.20)
for Iny* we obtain the data shown in Table III, giving y*
and 7 as a function of »* up to r*=0.25. The reason that
we stop at »*=0.25 for disks is that in order for our
analysis to work we must have a very accurate value of
r*

Having reliable values of ¥* and 7 for a range of #’s up
to r*=0.25, we turn to the computation of the
maximum-entropy polynomials from the series of (3.11).
For r* = the first two polynomials are

I';=0.665079—1.209 670x ,

(6.4)
I',=1.369026—4.620020x +3.123 566x 2 .

The functions Py(x) are shown in Fig. 7. Unlike the case
of rods, the pairs of function shown do not so closely
resemble each other.

The values of the quantity

r=Py(1) 6.5)

TABLE III. Equilibrium activity coefficient and relaxation
time for disks.

r* v* T
0.0 1.0 1.0
0.5 1.2112 1.0073
1.0 1.5009 1.0318
1.5 19116 1.0788
2.0 2.5165 1.1572
2.5 3.4488 1.2816

1+38.134 66r —34.92329r2+3.386 44r3

(6.3)

f

as given in (4.20) are shown in Table I. From Table III
we have the result that the correct value is 7=1.286. As
was the case for rods, we see that the values of 7 given by
(6.5) do not approach the correct value as N is increased.
In Table IV we show the values of #(x) computed from
Ps and P,. We pick these two functions to illustrate
since P gives the best estimate of 7 and P, gives the larg-
est number of correct moments.

As a comparison we convert the series of (3.11) into the
q series defined by

t=—In(l1—x)g(x), (6.6)
with
g(x)=1+0.09843x +0.382617x2+0.017 853 2x >
+0.010 122x*+0.006 742 85x 3 +0.004 986 8x ¢

+0.00392347x7+ - - - . 6.7)

TABLE IV. The values of (x) for various approximations
for the adsorption of disks; all for r*=1.

x P P, Mean Padé
0.1 0.1064 0.1064 0.1064
0.3 0.3686 0.3686 0.3686
0.5 0.7361 0.7361 0.7361
0.7 1.3229 1.3229 1.3229
0.9 2.6598 2.6646 2.6606
0.99 5.5519 6.1322 5.6683
0.999 8.3535 11.5748 8.7149
0.9999 11.0867 18.7760 11.613
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FIG. 7. The maximum-
0 0.2 0.4 0.6 0.8 1 0 02  0.¢ 06 0.8 T entropy distribution Py(x) for
N=1to 7 for disks (with r*=1)
based on the I' y(x) of (6.4). The
2 3.5 end points, Py(x =1), give an
3 R estimate of the asymptotic relax-
1.5 2.5 ation time and are listed in Table
P5 2 L
1
1.5
0.5 e 1
0.5
x x
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

The Q4 5 and Q5 , approximants give very similar results.
The closest denominator roots to the origin are, respec-
tively, x,=1.017 75 and x , =1.020 445, so both approxi-
mants are finite at x=1. The values of g (x=1) give the
following estimates of 7: 1.269 69 and 1.263 618 both of
which agree very well with the value given in Table III,
namely, 7=1.286. Numerical values of ¢ (x) as given by
the mean of the ¢’s given in (6.8) are listed in Table IV.
The Padé approximants and P agree very well with each
other but they both disagree with the results of P, for
x>0.9. Thus the more moments used does not necessari-
ly give the better long time results. Figure 8 illustrates

0.8

0.6

0.4 1

0.2 1

0.0 T

FIG. 8. The time dependence of the fraction of the equilibri-
um surface coverage for disks as a function of time (for r*=1).
The solid curve shown is for the mean result obtained with the
two Padé approximants of (6.8) while the solid points are calcu-
lated using the maximum-entropy result obtained from Ps(x);
the data points shown are for x=0 to 0.9 in steps of 0.1 and for
the point x=0.99.

the use of the mean Padé approximant and P giving x
(fraction of final density) as a function of time.

VII. SUMMARY

We have illustrated how the equilibrium virial
coefficients for hard disks can be used to describe the re-
versible adsorption kinetics of disks to a smooth, two-
dimensional surface assuming instantaneous equilibrium
on the surface. We have seen that the eight-term virial
series can be converted into a seven-term series, Eq. (3.9),
for the time as a function of the fraction of the equilibri-
um surface coverage. As is the case for the equilibrium
virial series, this series for the time is well behaved with
coefficients of uniform sign.

We then applied the maximum-entropy method to the
extrapolation of the series, a procedure that has built in
the correct asymptotic form and the correct asymptote.
The disadvantage of this method is that the final result is
obtained as a numerical integral. The marked oscillatory
behavior of the Py(x) as shown in Figs. 4 and 7 is puz-
zling: we do not know whether Py(x) will approach a
limiting form or whether the number of oscillations will
increase indefinitely with N. Of course the function
t =t(x), through the integral of (4.18), does approach a
limiting form (the exact kinetics) and this is a monotoni-
cally increasing function of x. The oscillations in the
Py(x) seem to preclude these functions giving an accu-
rate description of the very final stages of the adsorption
process since the estimates 7=Py(x =1) are erratic and
do not seem to follow any trend as N is increased.

All in all, the maximum-entropy method and the Padé
approximant method [using the form of (5.10)] seem to
work about equally well, both methods being able to de-
scribe about 99% of the adsorption process as shown in
Table IV. It is certainly useful to have an additional tool,
the maximum-entropy method, available for the exten-
sion of series expansions.
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